1. B. Fazekas, M. Plum, C. Wieners, D: Enclosure for the Biharmonic Equation, DROPS (Dagstuhl Research Online Publication Server), Seminar 05391, http://drops.dagstuhl.de/protals/05391, 2006
  2. B. Fazekas: Decision functions and characterization of their properties, Math. Inequal. Appl. 10, 29-43, 2007
  3. B. Fazekas: Computer-assisted enclosures for fourth order elliptic equations, Doktori disszertáció, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2012
  4. B. Fazekas: Computer-assisted enclosures for fourth order elliptic equations, Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, 2012
  5. S. Nagy, B. Fazekas, L. Juhasz, K. Sailer: Critical exponents in quantum Einstein gravity, Phys. Rev. D, DOI: 10.1103/PhysRevD.88.116010,  2013
  6. J. Kovacs, B. Fazekas, S. Nagy, K. Sailer: Quantum-classical transition in the Caldeira-Leggett model, Annals of Physics 376, DOI: 10.1016/j.aop.2016.12.010, 2017
  7. S Nagy, B Fazekas, Z Peli, K Sailer, I Steib: Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation, Class. Quantum Grav., Vol. 35, Nr. 5, DOI: 10.1088/1361-6382/aaa6ee, 201

2018. február 13.